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Abstract - This research paper presents an innovative methodology for the identification and detection of objects in 

autonomous driving systems that employ field-programmable gate arrays (FPGAs). Through the integration of deep learning 

methodologies with FPGA hardware acceleration, the approach successfully attains the minimal latency and optimal 

precision necessary for secure navigation. By conducting data acquisition, preprocessing, and model training, this can 

refine the system's performance. By employing parallel computing and hardware optimisation techniques, the FPGA 

implementation achieves these objectives. Based on experimental data, the FPGA-based approach outperforms conventional 

CPU and GPU implementations in terms of power efficiency, inference latency, and detection precision. The widespread 

adoption of field-programmable gate arrays (FPGAs) for enhanced object recognition and identification in autonomous 

vehicles is imminent due to their exceptional compatibility with autonomous driving systems. 

Keywords - Real-Time Object Detection, Object Recognition, Field Programmable Gate Array, Deep Learning, Autonomous 

Driving. 

 

1. Introduction  
The potential for autonomous driving technology to 

significantly impact various aspects of daily lives—

mobility, safety, and efficiency is immense [1]. The 

operation of an autonomous vehicle is contingent on the 

capacity to perceive and comprehend one's environment in 

the moment accurately. Critical components of this system 

enable vehicles to identify and detect a variety of objects, 

including bicycles, humans, and traffic signals, and to 

respond accordingly [2]. For autonomous driving 

technology to be secure, object detection and identification 

technologies must be dependable and effective. Historically, 

object detection and identification technologies have been 

dependent on applications executed on general-purpose 

central processing units (CPUs) or graphics processing units 

(GPUs) [3]. Although these techniques perform adequately, 

they might not be capable of handling the rigorous real-time 

processing requirements of autonomous driving scenarios. 

Low throughput, high power consumption, and high latency 

are the primary obstacles to the widespread adoption of 

these systems [4]. 

 

Considering these obstacles, researchers and developers 

have been examining novel computing platforms such as 

Field Programmable Gate Arrays (FPGAs) to accelerate 

object recognition and identification. FPGAs offer 

numerous benefits over conventional CPUs and GPUs, 

including low power consumption, high parallelism, and 

programmable hardware design [5]. Real-time object 

detection and identification systems can potentially achieve 

substantial performance and efficiency gains by leveraging 

these characteristics in conjunction with field-programmable 

gate arrays (FPGAs). In recent times, deep learning 

algorithms have dominated object recognition and detection 

algorithms by virtue of their capacity to acquire intricate 

patterns and representations from data [6]. Convolutional 

Neural Networks (CNNs) have demonstrated exceptional 

efficacy across an array of computer vision domains, 

encompassing segmentation, classification, and object 

recognition [7]. While deploying deep learning models on 

systems with limited resources, such as FPGAs, several 

technical obstacles emerge. These encompass limitations on 

memory bandwidth, optimisation of algorithms, and 

utilisation of hardware resources. This research introduces 

an innovative methodology for autonomous driving systems 

that leverage FPGA hardware acceleration in conjunction 

with deep learning techniques to enable real-time object 

recognition and identification. To circumvent the challenges 

associated with solutions that depend on conventional CPU 

or GPU implementations, this leverages the hardware 

flexibility and parallel processing capabilities of FPGAs [8]. 

This aims to enhance the hardware architecture and software 

algorithms so that real-world autonomous driving scenarios 

can be executed with reduced latency, increased precision, 
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and reduced power consumption. Integration with 

autonomous vehicle systems, data preparation, model 

training, FPGA deployment, and FPGA training comprise 

the proposed solution [9], [10]. Train the object recognition 

and identification model; this provides it with an extensive 

variety of images and annotations. As a result, these are 

confident that the model will operate efficiently across a 

wide variety of environments and data types. Subsequently, 

the gathered dataset will be employed to refine cutting-edge 

deep learning architectures that were utilised in the training 

of the model for real-time inference on FPGA hardware. By 

employing methodologies including memory optimisation, 

parallelism, and pipelining, it achieves power and latency 

reductions in the hardware of the FPGA implementation. 

Integrating the FPGA-accelerated object identification and 

detection module with other autonomous driving system 

components, including sensors, control algorithms, and 

decision-making modules, should not present any 

significant difficulty. 

2. Literature Review 
S. P. Kaarmukilan et al. [11] This research focuses on 

investigations pertaining to the recognition and 

identification of objects in real time. Significant in 

numerous domains, such as safety, healthcare, and 

autonomous vehicles, is this field. The study utilises Xilinx 

PYNQ Z2 and Intel Movidius Neural Compute Stick (NCS) 

to develop hardware solutions that improve system 

performance through the implementation of convolutional 

neural networks (CNNs). This evaluation contrasts the 

performance of Single Shot Detector (SSD), Faster Region 

CNN (FRCNN), and You Only Look Once (YOLO) deep 

learning techniques based on detection probability, 

computation time, and frame rate. The results illustrate that 

the suggested approach surpasses the current models, 

thereby substantiating its effectiveness. E. Rzaev et al. [12] 

that the issue of object recognition in real-time by 

examining the integration of field-programmable gate arrays 

(FPGAs) with neural networks (NNs). Particular attention is 

paid to the DE10-Nano FPGA platform as it investigates 

possible integration strategies for the YOLOv3 neural 

network. Size and cost advantages more than offset the 

FPGA board's marginally inferior performance in critical 

metrics such as mAP, FPS, and inference time when 

compared to GPU-based alternatives. Through an 

examination of various techniques for transitioning neural 

networks to FPGA, this research concludes that the 

architecture is suitable for tasks involving object recognition 

in live video feeds. V. Y. Cambay et al. [13] This study 

aims to analyse the encouraging outcomes that 

convolutional neural networks (CNNs) have exhibited in 

diverse fields, including robotics, medical imaging, and 

autonomous vehicles, with respect to object recognition and 

identification. Despite the stability provided by these 

implementations, there are certain disadvantages to training 

CNNs on GPUs, including high power consumption and 

computational load. In order to address these concerns, the 

study suggests the implementation of Field Programmable 

Gate Arrays (FPGAs). Real-time object identification could 

be accomplished by utilising the ZYNQ XC7Z020 

development board, which integrates an ARM CPU and 

FPGA in conjunction with the Movidius USB-GPU, 

according to the study. Figures substantiate the outcomes, 

thereby illustrating the efficacy of this methodology. Zhang 

et al. [14] This study presents a productive object detection 

accelerator for the YOLO families of algorithms. This 

accelerator effectively addresses the challenges related to 

data access and computational complexity that 

convolutional neural networks (CNNs) encounter when 

operating on peripheral devices. In order to mitigate the 

need for off-chip bandwidth, the design incorporates 

dedicated data access units and line-buffer-based parallel 

data caches, as well as parallelism in multiple dimensions. 

In orderTo reduce the time required for detection, the design 

incorporates improvements to post-processing and 

convolutional computation. During evaluation on a Xilinx 

V7-690t FPGA device, remarkable bulk throughputs of 525 

GOP/s and 914 GOP/s were observed for sizes one and two, 

respectively. This represents a significant advancement 

compared to the current state-of-the-art YOLOv2 and 

YOLOv3 solutions, with a 5x reduction in latency and a 9x 

increase in throughput. Zhai et al. [15] This study presents 

an intelligent transportation system that identifies and tracks 

vehicles. Priorities include power consumption, latency, and 

precision. It combines the Deepsort algorithm executed on 

FPGA with YOLOv3 and YOLOv3-compact CNNs. By 

employing dynamic threshold pruning and 16-bit fixed-

point quantisation, it is possible to decrease the size of 

models to address challenges related to computational 

complexity, model parameter size, and throughput. 

Reidentification (RE-ID) datasets facilitate tracking; 

however, they lead to higher resource utilisation because of 

hardware improvements such as memory multiplexing and 

pipelining. Experimental results demonstrated a reduction in 

model size and the detection of six-way parallel video 

streams at 168.72 frames per second, both of which are 

critical for real-time processing. 

3. Proposed Work 
3.1. Data Collection and Preprocessing 

The collection and organisation of data are critical 

components in the development of a reliable object 

recognition and identification system for autonomous 

vehicles. The quality and diversity of the training dataset 

significantly influence the efficacy of the system. This study 

employs the extensively utilised KITTI dataset for data 

collection, preprocessing, and model training. The KITTI 

dataset comprises an extensive compilation of images that 

were obtained during the motion of a vehicle using a variety 

of sensors (cameras, lidar, GPS, etc.). A diverse range of 

real-life driving scenarios are illustrated in these 

photographs, encompassing urban streets, rural roads, and 
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highways. Before being fed into the training pipeline, 

unprocessed image data must be preprocessed to ensure that 

it is suitable for training deep learning models. This 

preprocessing entails several essential procedures: Each 

photograph in the collection is accompanied by bounding 

outlines that specify its geographic location. There are 

automobiles, pedestrians, bicycles, and traffic signals in 

these containers. The ground truth labels supplied by these 

annotations are utilised in the training process of the item 

detection and identification model. Numerous techniques 

are employed to enhance the image quality of the training 

dataset to augment its diversity and robustness. Such 

algorithms simulate arbitrary translations, scaling, rotations, 

and flips to simulate driving in varying illumination 

conditions. To enhance training convergence speed, one 

may consider normalising the pixel values of the input data, 

thereby increasing its consistency. The input data should 

possess a mean of zero and a variance of one unit to ensure 

a uniform distribution. Mean subtraction and standard 

deviation scaling are two prevalent techniques utilised to 

normalise data. Possible performance degradation of the 

trained model due to an uneven distribution of object classes 

in the dataset. To mitigate this issue, oversampling or under-

sampling minority classes are two methods that can be 

employed to achieve a more balanced distribution of object 

instances among classes.  

 

By dividing the dataset into distinct sets for training, 

validation, and testing, it becomes easier to conduct model 

training, modify hyperparameters, and evaluate 

performance. Every subset of the dataset is subjected to a 

thorough examination of its statistical properties and class 

distributions. This takes great care in gathering and 

organising the training data, ensuring that it is 

comprehensive, thoughtfully curated, and reflective of the 

actual driving circumstances encountered by autonomous 

vehicles in the wild. This is advantageous for autonomous 

driving systems constructed on FPGAs, as it permits the 

training of object detection and identification models that 

are highly precise and capable of differentiating objects in 

real time. Table 1 depicts the KITTI dataset. Fig 1 depicts 

the block diagram of the model. 
 

Table 1. Dataset statistics 

Dataset Total Images Annotations 

KITTI 10000 50000 

 

 

 

 

 

 

 

 

 
 

  Fig. 1 Block diagram of the model 

3.2. Model Training Using Deep Learning Technique 

To develop efficient object detection and identification 

systems for autonomous driving applications with the use of 

field-programmable gate arrays (FPGAs), it is necessary to 

employ deep learning methodologies for model training. 

This research endeavour employs the cutting-edge deep 

learning methodology Single Shot Multibox Detector 

(SSD), renowned for its exceptional performance in 

accurately identifying objects. Utilising a solitary forward 

pass, the SSD architecture predicts object-bounding boxes 

and class probabilities at multiple spatial scales concurrently 

via a solitary convolutional neural network (CNN). To 

acquire the capability of object recognition and localisation 

within input images, the SSD model progressively adjusts 

its internal parameters with the objective of minimising a 

predetermined loss function. The core stages of this 

methodology consist of the subsequent: To initiate feature 

extraction, the SSD model constructs a comprehensive 

hierarchical model of the input image through the utilisation 

of a sequence of convolutional layers. Layers such as this 

accumulate features at various scales and degrees of 

abstraction through a gradual reduction in the spatial 

resolution of the input. To aid in the prediction of object 

bounding boxes, anchor boxes are constructed at different 

positions in the feature maps generated by the convolutional 

layers. These anchor boxes have predetermined diameters 

and aspect ratios. The following anchor frames can be 

utilised as a foundation for estimating dimensions and 

placement. The SSD model generates a single set of outputs 

for each anchor box by utilising the bounding box 

coordinates for localising items and the class probabilities 

for classifying objects. These predictions are generated 

concurrently using a combination of convolutional and fully 

connected layers, which enables efficient inference at a low 

computational cost. 

 

The classified probability and predicted bounding box 

coordinates are assessed in comparison to the ground truth 

annotations of the training dataset. The discrepancies 

between the predicted and actual labels are quantified by 

employing predetermined loss functions, which include 

smooth L1 loss for bounding box regression and cross-

entropy loss for classification. This assigns weights to each 

of these localisation and classification accuracy-related 

losses to obtain the overall loss. Using gradient descent 

optimisation, the SSD model iteratively adjusts its internal 

parameters, which are the weights of the convolutional 

layers. By backpropagating gradients in relation to model 

parameters, the model improves its predictive performance 

while simultaneously minimising loss on the training 

dataset. As the learning procedure is iteratively refined, the 

SSD model's capability to detect and localise objects of 

interest in input images improves over time. By stabilising 

the model's parameters after training and subsequently 

implementing it for real-time inference on FPGA hardware, 

autonomous driving systems can achieve object recognition 
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and detection that is both precise and expedient. Fig 2 

depicts the CNN architecture diagram. 

   

conv2d-input input: [(None, 28, 28, 1)] 

Input Layer output: [(None, 28, 28, 1)] 

 

conv2d input: [(None, 28, 28, 1)] 

Conv2D output: [(None, 28, 28, 32)] 

 

max_pooling2d input: [(None, 26, 26, 32)] 

MaxPooling2D output: [(None, 13, 13, 32)] 

 

conv2d_1 input: [(None, 13, 13, 32)] 

Conv2D output: [(None, 11, 11, 64)] 

 

max_pooling2d_1 input: [(None, 11, 11, 64)] 

MaxPooling2D output: [(None, 5, 5, 64)] 

 

conv2d_2 input: [(None, 5, 5, 64)] 

Conv2D output: [(None, 3, 3, 64)] 

 

flatten input: [(None, 3, 3, 64)] 

Flatten output: [(None, 576)] 

 

dense input: [(None, 576)] 

Dense output: [(None, 64)] 

 

Dense_1 input: [(None, 64)] 

Dense output: [(None, 10)] 
   Fig. 2 CNN architecture diagram 

 

3.3. FPGA Implementation for Hardware Acceleration  

To perform real-time object recognition and 

identification, autonomous driving systems require field-

programmable gate arrays (FPGAs), which provide 

hardware acceleration. Utilising the parallel processing 

capabilities of FPGA hardware while installing the Single 

Shot Multi-box Detector (SSD) technique is the primary 

objective of this research in an effort to produce high-

performance inference. For embedded deep learning 

applications, FPGAs are optimal due to their low latency, 

rapid throughput, and energy efficiency. Conventional CPU 

and GPU systems do not possess these attributes. For the 

SSD method's computational duties to be executed 

efficiently, a custom hardware configuration was required. 

This architectural design frequently incorporates specialised 

processing units, such as fully connected and convolutional 

layers, which are connected via a network of programmable 

logic components and memory blocks. Particularised 

hardware modules are engineered to execute high-speed 

parallel operations, encompassing operations such as matrix 

multiplications, non-linear transformations, and activation 

functions. The SSD approach is implemented in the FPGA 

architecture by allocating distinct hardware resources to 

each computational activity. By capitalising on the parallel 

nature of FPGAs and maximising throughput, numerous 

iterations of the algorithm can operate concurrently so as to 

optimise resource utilisation. The efficacy of the FPGA 

implementation is augmented through the utilisation of 

numerous hardware acceleration techniques. Utilising the 

SSD algorithm's intrinsic parallelism, these methods reduce 

latency and increase computational efficiency; it consists of 

loop unrolling, parallelism, and pipelining. Adapted 

memory architectures and data storage methods are 

developed to reduce bandwidth constraints and memory 

access latency. By means of careful resource allocation and 

optimisation, the hardware capabilities of the FPGA are 

brought to their fullest potential with minimal constraints 

and conflicts. It is imperative to partition the logic 

components, memory blocks, and routing resources of the 

FPGA to satisfy the SSD approach's computational and 

memory demands. Embedded applications, such as 

autonomous driving systems, prioritise power efficiency 

when utilising FPGA-based solutions. Power-aware 

scheduling, clock gating, and dynamic voltage and 

frequency scaling are implemented as strategies to minimise 

power consumption while maintaining performance levels. 

By implementing the SSD algorithm on FPGA hardware 

using these techniques, precise, real-time item identification 

and recognition with minimal delay is possible. Due to this, 

it can be implemented in self-driving systems. Diverse 

autonomous driving applications have varying power and 

performance requirements; however, the FPGA-based 

approach provides a versatile and scalable resolution. 

 

3.4. Optimisation Techniques for Performance 

Enhancement 

Utilising field-programmable gate arrays (FPGAs), loop 

unrolling is a substantial optimisation technique that 

significantly improves the performance of object detection 

and identification systems in autonomous driving 

applications. Compiler optimisation techniques, such as 

loop unrolling, duplicate loop bodies repeatedly to increase 

instruction-level parallelism and decrease loop overhead. 

When considering implementations of deep learning 

algorithms on field-programmable gate arrays (FPGAs), 

such as the Single Shot Multi-Box Detector (SSD), loop 

unrolling significantly reduces latency and increases 

processing efficiency. It is customary to employ nested 

loops when developing deep learning algorithms for FPGA 

hardware. Within these loops, the input data and filter 

weights are processed iteratively using operations like 

matrix multiplication and convolution. As a result of 

memory access latencies and loop control logic, these 

iterations may introduce superfluous expenses, thereby 

diminishing the achievable throughput and prolonging the 

inference time. The FPGA compiler generates multiple 

duplicates of the loop body by unrolling these loops, which 

enables it to concurrently process a subset of the input data 

or filter weights. FPGA technology enables the concurrent 

execution of numerous iterations of the loop body through 
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the unrolling of loops, thereby utilising parallel processing 

capabilities. Executing a multitude of computational tasks 

concurrently improves both throughput and inference 

latency. Loop unrolling eliminates the necessity to update 

the loop control logic and loop counter, thereby reducing the 

workload associated with loop iteration. Resource utilisation 

is enhanced, and algorithms execute more rapidly when 

FPGA technology is employed. By unrolling loops, which 

access adjacent data components within the loop body, it 

may be possible to facilitate optimal memory access 

patterns. Enhanced memory bandwidth utilisation and 

decreased access latency may contribute to an overall 

improvement in performance. The FPGA compiler may 

discover additional optimisation opportunities, such as loop 

fusion and loop pipelining, by unrolling loops. These 

modifications result in a more streamlined hardware 

implementation, potentially causing improved performance 

and reduced resource consumption. Achieving an optimal 

equilibrium between loop unrolling and other resource 

utilisation factors is of utmost importance, as an 

overemphasis on loop unrolling could lead to resource 

contention and a subsequent decline in performance. 

Determining the optimal unrolling factor for an FPGA-

based system necessitates some experimentation and fine-

tuning, considering hardware resources, input data size, and 

performance requirements. Autonomous driving systems 

that implement deep learning algorithms on FPGAs could 

potentially benefit significantly from the optimisation 

technique known as loop unrolling. By implementing loop 

unrolling, loop overhead is reduced, and parallelism is 

leveraged to enhance computation efficiency and inference 

latency substantially. These contributions collectively 

enhance the development of autonomous driving systems 

that are both responsive and efficient. 
 

3.5. Integration with Autonomous Driving System 

The seamless integration of the FPGA-accelerated 

detection and identification module with other components 

of the autonomous driving system guarantees consistent and 

effective performance in practical driving situations. The 

development of autonomous driving systems frequently 

incorporates control, perception, decision-making, and 

planning modules. An FPGA is utilised by the object 

detection and identification module, an essential element of 

the perception module, to locate and identify objects near 

the vehicle. The decision-making and planning modules 

utilise the outputs of the detection and recognition module 

to facilitate additional analysis and decision-making. 

Bounding box coordinates and object classes are contained 

in these outputs. It is critical to integrate the software and 

hardware of the autonomous driving system; connecting the 

FPGA-based detection and recognition module is one such 

component. Connectivity ports enable the transmission and 

reception of data from the FPGA; these ports may be 

utilised to link cameras, lidar, radar, and additional 

environmental sensors. To ensure that all modules are 

operating in concert, synchronisation with the system's 

controls and sequencing may be a component of the 

integration procedure. Ensuring the synchronisation and 

coordination of data flows among the diverse components of 

the autonomous driving system and the FPGA-based 

module is a critical element of integration. It might be 

necessary to develop new data exchange formats and 

communication protocols to ensure that all modules can 

freely share information and interact with one another. To 

effectively react to changing driving conditions and make 

prompt judgments, feedback circuits and real-time data 

processing are indispensable. In addition to the development 

of the autonomous driving system, the integrated system 

must be validated and tested in real-world and virtual 

driving scenarios. This guarantees the dependable and 

effective operation of the FPGA-accelerated detection and 

identification module within the broader framework of the 

autonomous driving system. To ensure that the integrated 

system functions, is safe, and dependable, it must be 

rigorously tested in a variety of driving conditions and 

environments. Engineers with specialised knowledge in 

autonomous driving technologies and hardware, in addition 

to software, are required to work closely together during the 

laborious and recurring process of integrating with the 

vehicle's architecture. Integrating FPGA-accelerated object 

detection and identification functionalities into the 

autonomous driving system's design can optimise the 

utilisation of FPGA-based technologies in the development 

of dependable, secure, and efficient autonomous vehicles. 

3.6. Evaluation and Validation in Real-World Scenarios 

To determine the dependability and efficacy of object 

detection and identification systems utilised in FPGA-based 

autonomous driving applications, validation and evaluation 

in real-world scenarios are critical. The ultimate objective is 

to ensure that the system operates as intended in each 

difficult circumstance that drivers may confront. To assess 

the efficacy of the system, it is subjected to exhaustive 

testing utilising authentic driving situations captured from a 

variety of settings, such as intercity thoroughfares, major 

thoroughfares, and rural roads. The object detection and 

identification system encounters a multitude of obstacles 

across diverse environments, encompassing meteorological 

fluctuations, vehicular congestion, lighting conditions, and 

road configurations. Quantitative metrics are employed to 

assess the system's reliability in identifying and detecting 

various objects, including individuals, bicycles, vehicles, 

and traffic signs. The metrics encompassed in this set are 

mean average precision (mAP), recall, and detection 

accuracy. These metrics identify areas in which the system 

could be enhanced through a comparison of its efficacy on 

various object types. The evaluation dataset comprises 

ground truth annotations, which are compared to the 

system's outputs as an integral component of the validation 

process. Through the process of comparing the identified 

objects with the ground truth labels, it is possible to identify 
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localisation errors, false positives, and false negatives. To 

ascertain the origins of these errors and devise strategies to 

mitigate their impact, a comprehensive analysis is 

conducted. Qualitative evaluation involves visual inspection 

and examination of the system's outputs in authentic driving 

situations, in addition to the collection of quantitative data. 

Human annotators assess the accuracy and scene relevance 

of the detected objects. The qualitative feedback has the 

potential to shed light on aspects of the system's overall 

performance and identify potential development areas that 

may go unnoticed by quantitative metrics alone. To 

guarantee the system's dependability in practical scenarios, 

it is subjected to exhaustive testing under a variety of 

challenging conditions. These encompass a range of 

challenges, such as low-light situations, adverse weather 

conditions, occlusions, and fast-moving objects in dynamic 

sequences. These evaluations have the potential to assist in 

assessing the system's responsiveness and its ability to 

manage challenging driving conditions. Real-world testing 

and validation are critical for ensuring the functionality, 

dependability, and safety of object detection and 

identification systems utilised in FPGA-based autonomous 

driving applications. Engineers must subject the system to 

rigorous testing in various demanding environments if these 

are to advance autonomous driving technology. This data is 

utilised to enhance the functionality of the system, identify 

vulnerabilities in security measures, and optimise 

algorithms.  

 

4. Results 
 The study provides tables and equations to determine 

whether the proposed method is effective and efficient. 

Critical evaluation metrics, such as mean average precision 

(mAP), power consumption, and resource use ratio, are 

established by Equations (1) through (4). The hardware 

specifications of the Xilinx Ultra-Scale+ and Intel Stratix 10 

FPGA devices utilised in the investigations are detailed in 

Table 3. It incorporates power consumption, clock 

frequency, and resource utilisation. A comprehensive 

comprehension of the hardware capabilities and constraints 

of the FPGA-based implementation necessitates adherence 

to these specifications. The experimental outcomes are 

presented in Table 4, which also provides comparisons of 

various implementations, including FPGA, CPU (baseline), 

and GPU. The FPGA implementation attains a detection 

accuracy of 95% while consuming less than 11 volts of 

power and exhibiting an average latency of 14 milliseconds. 

When comparing the GPU baseline and the CPU baseline, 

the latter achieves an equivalent accuracy of 91% at the 

expense of 51 watts of power, 17 milliseconds of latency, 

and 37 watts of latency, respectively. The results of this 

study offer promising indications for the possible 

implementation of the FPGA-based methodology in 

autonomous driving systems to detect and identify objects in 

real time. By leveraging FPGA hardware acceleration and 

optimising algorithms, it is possible to attain superior levels 

of precision, minimal latency, and energy efficiency. This 

establishes the foundation for future autonomous vehicles 

that are more dependable and secure. 

 

mAP =
1

N
 ∑ APi𝑁

𝑖=1      (1) 

 

 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
1

𝑁
∑ Ti𝑁

𝑖=1          (2) 

 

 𝑃𝑜𝑤𝑒𝑟 =  𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ∗  𝐶𝑢𝑟𝑟𝑒𝑛𝑡            (3) 

      

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑈𝑠𝑒𝑑 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
∗ 100% 

      (4) 
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Fig. 3 Comparison of the proposed CPU and GPU methods 

 

Table 3. Hardware specifications 

FPGA Model Resource Utilized 
Clock 

Frequency 

Power 

Consumption 

Xilinx Ultra 

Scale+ 

70% LUTs, 50% 

DSPs, 30% BRAM 
250 MHz 15 Watts 

Intel Stratix 10 

60% LUTs, 40% 

RAM Blocks, 20% 

DSPs 

300 MHz 20 Watts 

 

Table 4. Experimental results and comparison of metrics 

Implementation Accuracy (%) 
Latency 

(ms) 

Power 

Consumption 

(W) 

Detection 

Precision 

FPGA 95 14 11 94% 

CPU (Baseline) 86 51 37 85% 

GPU (Baseline) 91 17 23 91% 

 

5. Conclusion 

The amalgamation of hardware acceleration facilitated 

by field-programmable gate arrays (FPGAs) and deep 

learning methodologies represents a significant milestone in 

the evolution of autonomous driving technology. This 

method outperforms conventional CPU or GPU 

implementations in terms of effectiveness, latency, power 

consumption, and detection precision, according to our 

findings. A resilient and expandable system has been 

designed by our team, employing field-programmable gate 

arrays (FPGAs) to meet the stringent demands of 

autonomous driving applications. The experiments we have 

conducted provide evidence that field-programmable gate 

arrays (FPGAs) have the potential to significantly transform 

the transportation industry by enhancing the dependability, 

security, and efficacy of autonomous vehicles. For real-time 

processing of immense sensor data sets and millisecond-

level decision-making, the FPGA-based method provides 

unparalleled speed and efficiency. By incorporating object 

detection and identification modules that utilise field-

programmable gate arrays (FPGAs), the efficacy and 

dependability of the autonomous driving system are 

significantly improved. You can be certain that everything 

will function in unison with this connection. 

 

Further investigation and progress are required in this 

domain to propel autonomous driving technology forward 

and enable the complete implementation of FPGA-based 

systems in the real world. The ongoing progress and 

refinement of field-programmable gate array (FPGA)--based 

autonomous driving systems possess the capacity to 

fundamentally transform the transportation sector through 

the provision of safer and more navigable roads. This 

method can give superior results while implementing with 

FPGA using Verilog Code and VHDL. The FPGA design 

can be verified with System-Verilog Test-bench or UVM 

methodology. IP level, module level or SoC level 

verification can be implemented. Verification can be 

improved with a formal verification method and functional 

coverage implementation. 
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